Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin
نویسندگان
چکیده
We have determined metallographic cooling rates below 975 K for eight main group (MG) pallasites from Ni profiles across taenite lamellae of known crystallographic orientation in metallic regions with Widmanstätten patterns. Comparison with profiles generated by modeling kamacite growth gave cooling rates ranging from 2.5 to 18 K/Myr. Relative cooling rates were also inferred from the sizes of cloudy zone particles in 28 MG pallasites (86–170 nm) and tetrataenite bandwidths in 20 MG pallasites (1050–2170 nm), as these parameters are positively correlated with each other and negatively correlated with the metallographic cooling rates. These three different techniques show that MG pallasites cooled below 975 K at significantly diverse rates. Since samples from the core–mantle boundary should have indistinguishable cooling rates, MG pallasites could not have cooled at this location. Group IIIAB irons, which were previously thought to be core samples from the MG pallasite body, have faster cooling rates ( 50–350 K/Myr) and smaller cloudy zone particle sizes and tetrataenite bandwidths. This shows that IIIAB irons cooled faster than MG pallasites and could not plausibly be from the same body. The absence of related iron meteorites and achondrites and our thermal constraints suggest that MG pallasites cooled at diverse depths in a pallasitic body consisting of well-mixed olivine and metallic Fe–Ni. Such a body may have formed during an impact on a differentiated asteroid or protoplanet that mixed olivine mantle fragments with residual Ir-poor molten metal from the outermost part of a core that chemically resembled the IIIAB core and was 80% fractionally crystallized. Separation of the solid core and most of the associated mantle may have resulted from a grazing hit-and-run impact with a larger protoplanet or asteroid. Thermal calculations suggest that the radius of the pallasitic body was 400 km but the likely presence of a regolith would reduce this estimate considerably. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Metallographic cooling rates of the IIIAB iron meteorites
An improved computer simulation program has been developed and used to re-measure the metallographic cooling rates of the IIIAB irons, the largest iron meteorite chemical group. The formation of this chemical group is attributed to fractional crystallization of a single molten metallic core during solidification. Group IIIAB irons cooling rates vary by a factor of 6 from 56 to 338 C/My. The coo...
متن کاملHighly Siderophile Elements in Pallasites and Diogenites, including the New
Introduction: Pallasites are long thought to represent a metallic core-silicate mantle boundary, where the IIIAB irons are linked to the crystallization history of the metallic fraction, and the HED meteorites may be linked to the silicate fraction [1,2,3]. However, measurement of trace elements in individual metallic and silicate phases is necessary in order to fully understand the petrogeneti...
متن کاملRe-Os ISOTOPIC AND HIGHLY SIDEOPHILE ELEMENT SYSTEMATICS OF PALLASITES
Introduction: Pallasites are of great interest to meteoriticists because they may represent samples of the interfaces between core and mantle materials in asteroids. Further, certain pallasites may be genetically related to the group IIIAB irons, based on similar ∆O values [1], potentially permitting the study of core-mantle evolution within a single body. To better understand the origin and ev...
متن کاملDetermining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamacite–taenite interfaces
Analyses and modeling of Ni zoning in taenite in differentiated meteorites provide metallographic cooling rates at 500 C that are inconsistent with conventional formation models. Group IVA iron meteorites have very diverse cooling rates of 100–6600 C/Myr indicating that they cooled inside a large metallic body with little or no silicate mantle (Yang et al., 2007). Wasson and Hoppe (2012) have q...
متن کاملMetallographic cooling rates and origin of IVA iron meteorites
We have determined the metallographic cooling rates for 13 IVA irons using the most recent and most accurate metallographic cooling rate model. Group IVA irons have cooling rates that vary from 6600 C/Myr at the low-Ni end of the group to 100 C/Myr at the high-Ni end of the group. This large cooling rate range is totally incompatible with cooling in a mantled core which should have a uniform co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010